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1. Introduction

The AdS/CFT correspondence [1] has provided a new approach to tackle strongly coupled

theories. This has recently boosted the search for string realizations of QCD-like theories [2,

3]. A crucial ingredient in these realizations is a (compact) warped extra dimension that

plays the role of the energy scale in the QCD-like theory. It is therefore interesting to

look for properties of QCD in the strong regime that can be derived from weakly coupled

theories in five-dimensions. Examples of this type of properties have already been found

in high-energy hadron scattering [4], string breaking [5], hadron form factors and hadron

spectroscopy [6]–[13].

In refs. [10, 11] a five-dimensional model was proposed to study the breaking of the

chiral symmetry in QCD. The model was described in terms of infinite weakly coupled

resonances, similar to QCD in the large-Nc limit. The vector sector was studied and

several relations among couplings and masses were derived based only on the (warped)

five-dimensionality of the space. The predictions of the model showed a good agreement

with QCD.

Here we will extend this analysis to the scalar and pseudoscalar sector. We will cal-

culate the scalar and pseudoscalar two-point correlator and show that they have a similar

behavior to that in QCD. We will obtain the masses and couplings of the resonances, point-

ing out the implications of working with a warped extra dimension. We will also calculate

the scalar form factor of the pseudo-Goldstone boson (PGB) and the pseudo(scalar) con-

tributions to the Li coefficients of the low-energy chiral lagrangian. A prediction for the

quark masses will also be given. We will compare our results with the QCD experimental

data whenever this is available.
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2. A five-dimensional model for QCD

The 5D model proposed to study the properties of QCD with 3 flavors consists in a theory

where the chiral symmetry U(3)L⊗U(3)R is gauged in the 5D bulk.1 Parity is defined as

the interchange L ↔ R. The bulk fields are the gauge bosons LM , RM and a complex

scalar field Φ transforming as a (3L,3̄R). This scalar plays the role of the operator qq̄ in

QCD whose vacuum expectation value (VEV) is responsible for the breaking of the chiral

symmetry. The 5D metric in conformal coordinates is defined as

ds2 = a2(z)
(
ηµνdxµdxν − dz2

)
, (2.1)

where a is the warp factor. We will work within AdS5

a(z) =
L

z
, (2.2)

where L is the AdS curvature radius. The AdS5 metric will guarantee conformal invariance

of the model at high energies. The fifth dimension is assumed to be compact, L0 ≤ z ≤
L1 [14]. The boundary at z = L1 generates a mass gap in the model (breaks the conformal

symmetry at energies ∼ 1/L1), while the boundary at z = L0 is only needed to regulate

the theory. When performing calculations one must take the limit L0 → 0 and eliminate

the divergences that one encounters by properly adding UV-boundary counterterms [1].

The action is given by

S5 =

∫
d4x

∫
dz L5 , (2.3)

where

L5 =
√

g M5 Tr

[
−1

4
LMNLMN − 1

4
RMNRMN +

1

2
|DMΦ|2 − 1

2
M2

Φ|Φ|2
]

. (2.4)

The covariant derivative is defined as

DMΦ = ∂MΦ + iLMΦ − iΦRM , (2.5)

where M = (µ, 5) and Φ =
�
/
√

3 Φs + ΦaTa, with Tr[TaTb] = δab (and similarly for LM

and RM ). For the value of the scalar mass we take M2
Φ = −3/L2 that, by the AdS/CFT

dictionary, corresponds to associate the scalar Φ with a CFT operator of dimension 3 such

as q̄q. Solving the equation of motion for Φ we obtain

〈Φ〉 ≡ v(z) = c1 z + c2 z3 , (2.6)

where c1 and c2 can be written in terms of the value of v at the boundaries

c1 =
M̃qL

3
1 − ξ L2

0

LL1(L2
1 − L2

0)
, c2 =

ξ − M̃qL1

LL1(L2
1 − L2

0)
, (2.7)

1The U(1)A is broken by the anomaly that, although it will not be studied here, can also be incorporated

in extra-dimensional models along the lines of ref. [3].
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where we have defined

M̃q ≡ L

L0
v
∣∣
L0

, ξ ≡ Lv
∣∣
L1

. (2.8)

It can be shown that a nonzero M̃q corresponds to an explicit breaking of the chiral sym-

metry in the UV, while a nonzero c2 corresponds to a spontaneous breaking of the chiral

symmetry in the IR. Therefore the value of c2 is determined dynamically by minimizing

the action. In order to get a nonzero value for c2 in the chiral limit (M̃q = 0) we add a

potential for Φ on the IR-boundary:

LIR = −a4V (Φ)
∣∣
L1

, V (Φ) = −1

2
m2

b Tr |Φ|2 + λTr |Φ|4 . (2.9)

An origin for this type of potentials can be found in string constructions [2, 3]. To determine

the value of c2, or equivalently the value of ξ, we must minimize the effective 4D action

obtained after substituting eq. (2.6) into the 5D action. For L0 → 0, this is given by

Seff ' −
∫

d4xTr

{
M5L

[
−M̃2

q

2L2
0

+
M̃2

q

L2
1

− 2
ξM̃q

L3
1

+
3

2

ξ2

L4
1

]
+ V (ξ)

L4

L4
1

}
, (2.10)

that is minimized for

ξ2 =

�

4λ

(
m2

bL
2 − 3M5L

)
+ O(M̃q) . (2.11)

This 5D model depends on 5 parameters:2 M̃q, M5, L1, ξ and λ. The value of M̃q

is related to the quark masses as we will see below. The values of M5, L1 and ξ were

determined in ref. [11] from the gauge sector of the theory. By using the QCD values for

Nc, Mρ and Ma1
, it was found [11]:

M5L =
Nc

12π2
≡ Ñc,

1

L1
' 320 MeV, ξ ' 4 . (2.12)

Our predictions will be given using the above values (although in certain cases we will

study the dependence of the predictions on ξ). This leaves the scalar sector of the theory

depending only on one parameter, λ. An estimate of its value can be obtained using naive

dimensional analysis (NDA) that gives λ ∼ 1/(16π2) ∼ 10−2 − 10−3.

3. The scalar and pseudoscalar sector

We define

Φ = (v + S) eiP/v , (3.1)

where S corresponds to a real scalar and P to a real pseudoscalar under parity. Since we

will be considering the chiral limit M̃q → 0, we have v ∝ �
and the symmetry breaking

2We trade m2
b for ξ by means of eq. (2.11). In the following we will take ξ → ξ� + O(fMq) and treat ξ

as a parameter.
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pattern U(3)L⊗ U(3)R → U(3)V . Under SU(3)V we have that both S and P transform as

1 + 8. We will work in the unitary gauge. This corresponds to add the gauge fixing terms

LV
GF = −M5a

2ξV
Tr

[
∂µVµ − ξV

a
∂5(aV5)

]2

,

LA
GF = −M5a

2ξA
Tr

[
∂µAµ − ξA

a
∂5(aA5) − ξA

√
2a2vP

]2

,

(3.2)

where VM , AM = 1√
2

(
LM ± RM ), and take the limit ξV,A → ∞, i.e.

∂5(aV5) = 0 , P = − 1√
2a3v

∂5(aA5) . (3.3)

The above equation will allow us to write P as a function of A5 in the 5D lagrangian. After

integration by parts, the 5D quadratic terms for the scalar S and the pseudoscalar A5 are

given by

LS = −a3M5

2
Tr

{
S[∂2 − a−3∂5a

3∂5 + a2M2
Φ]S

}
,

LA5
= −aM5

2
Tr

{
A5

[
∂2D + D(2v2a2D)

]
A5

}
,

(3.4)

where D is a differential operator defined by

D = 1 − ∂5

(
1

2v2a3
∂5a

)
. (3.5)

The scalar and pseudoscalar field has also 4D boundary terms that, after using the 5D

equation of motion for A5 (i.e., DA5 = −∂2A5/(2v
2a2)) and eq. (2.11), can be written as3

Lbound = −M5a

2
Tr

[
a2S∂5S + A5

∂2

2v2a3
∂5(aA5) + 2Aµ∂µA5

]∣∣∣
L1

L0

− a4V (S)
∣∣
L1

+ M5a
3 Tr[S]∂5v

∣∣
L0

, (3.6)

where

V (S)
∣∣
L1

= m2
S Tr[S2]

∣∣
L1

+ O(S3), m2
S =

4λξ2

L2
− 3M5

2L
+ O(M̃q) . (3.7)

To cancel the quadratic terms on the IR-boundary of eq. (3.6) we impose the conditions

[
M5∂5 + 2am2

S

]
S

∣∣
L1

= 0, A5

∣∣
L1

= 0 . (3.8)

The boundary conditions on the UV-boundary will be specified later.

The interactions between scalars and pseudoscalars that we will be considering are

LSA5A5
=

a3M5

2
Tr

[
S

v3a6

(
∂µ∂5(aA5)

)2
− 4vS(DA5)

2

]
, (3.9)

LA4
5

=
M5

96a9v6
Tr

[(
∂5(aA5)

←→
∂µ ∂5(aA5)

)2
]
. (3.10)

3One obtains the same result if, instead of the equation of motion, one uses the mass eigenfunction

equation, DA5 = m2A5/(2v2a2), as we will do later to perform a Kaluza-Klein decomposition of the sector.
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The SV V interaction is absent. This is a consequence of the U(3)V invariance and the fact

that only dimension-four operators are considered in eq. (2.4). This interaction, however,

could be induced by higher-dimensional operators or loop effects.

With the above lagrangian for the scalar and pseudoscalar sector we can calculate any

relevant physical quantity. We will be considering two approximations. First, we will be

working at the tree-level. According to eq. (2.12) this corresponds to work in the large-

Nc limit. Since loop effects are expected to be of order 1/Nc, our predictions for QCD

quantities will have a 30% uncertainty. Second, we will take the chiral limit M̃q → 0.

For the pseudoscalar sector this limit will be taken in the following way. We will first

perform the calculations with c1 → 0 and fixed L0 (this is equivalent to M̃q → ξL2
0/L

3
1

and c2 → ξ/(LL3
1)). Next we will take the limit L0 → 0. This procedure simplifies the

calculations and avoids singularities at z = L0.

3.1 The scalar and pseudoscalar correlator

In this section we will calculate the scalar and pseudoscalar two-point correlator. In QCD

these are defined as

ΠS,P (p2) = −
∫

d4xeipx〈JS,P (x)JS,P (0)〉 , (3.11)

where JS = q̄q and JP = iq̄γ5q. The correlators ΠS,P can be obtained from the generating

functional S according to

ΠS =
δ2S
δs2

, ΠP =
δ2S
δp2

s

, (3.12)

where s and ps are the scalar and pseudoscalar external sources coupled to QCD:

L = −Tr[q̄L φ qR] + h.c., φ = Mq + s + ips . (3.13)

The AdS/CFT correspondence tells us [1] that S is obtained in the 5D theory by integrating

out the bulk fields restricted to a given UV-boundary value. These boundary values play

the role of the external sources coupled to QCD. In particular, for the 5D scalar field we

have

Φ
∣∣
L0

= α
L0

L
φ , (3.14)

where the constant α will be determined by matching with the QCD correlators in the UV

as we will see later. Up to the quadratic order in the fields, eq. (3.14) leads to

S
∣∣
L0

= α
L0

L

(
s + α

p2
s

2M̃q

)
, P

∣∣
L0

= −∂5(aA5)√
2a3v

∣∣∣
L0

= α
L0

L
ps . (3.15)

Let us calculate S =
∫

d4xLeff at the quadratic level for S and A5. By solving the

equations of motion from eq. (3.4) with the boundary conditions of eqs. (3.8) and (3.15),

and substituting the solution back into the action, we get (in momentum space)4

Leff =
1

2
ΠS(p2)Tr[s2] +

1

2
ΠP (p2)Tr[p2

s] + ΓS Tr[s] . (3.16)

4There is also a mixing term between ps and the longitudinal part of Aµ|L0
that we are not writing.
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For a AdS5 space ΠS can be given analytically at the tree-level. We obtain

ΠS(p2) = α2M5L

[
1

L2
0

+
ip

L0

J0(ipL0) + b(p)Y0(ipL0)

J1(ipL0) + b(p)Y1(ipL0)

]
, (3.17)

where Jn, Yn are Bessel functions, p is the Euclidean momentum and b(p) is determined by

the IR-boundary condition of eq. (3.8):

b(p) = −
ipL1J2(ipL1) − 8λξ2

M5LJ1(ipL1)

ipL1Y2(ipL1) − 8λξ2

M5LY1(ipL1)
. (3.18)

Taking the limit L0 → 0 we find

ΠS(p2) ' α2M5L

[
1

L2
0

+
1

2
p2 ln(p2L2

0) +
πp2

2b(p)

]
. (3.19)

The divergent terms for L0 → 0 can be absorbed in a bare mass and a bare kinetic term

for s. After this renormalization the correlator is finite. For large momentum pL1 À 1, we

find

ΠS(p2) ' α2M5L

2
p2 ln p2 , (3.20)

as expected from the conformal symmetry. Matching with QCD in which at large momen-

tum we have

ΠQCD
S (p2) ' Nc

8π2
p2 ln p2 , (3.21)

we obtain, using eq. (2.12),

α =
√

3 . (3.22)

The next to leading terms in the large momentum expansion in eq. (3.20) are suppressed

exponentially, contrary to QCD where one finds that the scalar correlator has power cor-

rections. This is because we assumed, for simplicity, that the scalar had a potential only

on the IR-boundary. In more realistic models such as those arising from string theories the

scalar potential is present in the 5D bulk (although peaked towards the IR). In these cases

the scalar correlator has power corrections. Also, if the 5D metric deviate in the IR from

AdS or if higher-dimensional operators are included in eq. (2.4), then power corrections

can be present in ΠS .

For small momentum ΠS(p2) can be approximated by

ΠS(p2) ' 3Ñc

[
− 2

L2
1

+
Ñc

2λξ2L2
1

]
+ O(p2) . (3.23)

The scalar correlator eq. (3.17) can also be written as a sum over infinitely narrow reso-

nances, similarly as in large-Nc QCD:

ΠS(p2) =
∑

n

F 2
Sn

M2
Sn

p2 + M2
Sn

. (3.24)

Therefore the masses of the scalar resonances can be determined by finding the poles of

eq. (3.19), i.e., by the equation b(p) = 0. In figure 1 we plot the value of the mass of the

– 6 –
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Figure 1: Mass of the first and second scalar resonances as a function of λ for ξ = 4. The dashed

lines show the experimental values for the masses of the scalar resonances a0(980) and a0(1450).

first and second scalar resonance as a function of λ for ξ = 4. The first resonance mass

ranges from MS1
= 0 MeV (λ → 0) to MS1

= 1226 MeV (λ → ∞). We compare this value

with the masses of the a0 states (since these are the QCD scalars whose masses are not very

sensitive to Mq). We see that for a value of λ close to its NDA estimate, λ ∼ 10−2 − 10−3,

the mass of the first scalar resonance is closer to that of a0(980) than to that of a0(1450).

Nevertheless we must recall that we are working in the large-Nc limit and then corrections

can be as large as 30%. Consequently we cannot discard to associate S(1) with a0(1450).

The scalar decay constants FSn are determined by the residues of ΠS . We obtain

F 2
Sn

=
3ÑcπM2

Sn

(
8λξ2

M5LY1(MSnL1) − MSnL1Y2(MSnL1)
)

MSnL1

(
1 − 8λξ2

M5L

)
J0(MSnL1) +

(
8λξ2

M5L + M2
Sn

L2
1 − 2

)
J1(MSnL1)

. (3.25)

For λ ' 10−3 we obtain MS1
' 1 GeV and FS1

' 260 MeV, while for the second resonance

we get MS2
' 1900 MeV and FS2

' 370 MeV. Using this result we can calculate the value

of the coupling cm defined in ref. [15]. We obtain cm = FS1
MS1

/(4B0) ' 41 MeV (taking

the value of B0 from eq. (4.14)) very close to the value used in ref. [15]: cm ' 42 MeV.

To calculate the pseudoscalar correlator ΠP we must rely on numerical analysis. Only

for small and large momentum we are able to give analytical results. For large momentum

pL1 À 1 we have

ΠP (p2) =
3Ñc

L2
0

+ p2

[
3Ñc

2
ln(p2L2

0) −
cP
6

p6
+ O

(
1

p12

)]
, where cP

6 = −64

5

3Ñc ξ2

L6
1

.

(3.26)

Again the divergences can be cancelled by adding a proper mass and a kinetic term for

the pseudoscalar ps on the UV-boundary. From eqs. (3.20) and (3.26) we can obtain the

correlator ΠSP = ΠS − ΠP at large momentum. It drops as ΠSP ∼ cP
6 /p4. Comparing

with ΠLR = ΠV − ΠA ∼ c6/p
4, we find cP

6 = 12 c6 [11] in strong disagreement with QCD

in which one has cP
6 = 3 c6. This can be improved if, as we said, we consider more realistic

theories where the scalar potential is present in the 5D bulk and therefore ΠS has power

corrections.
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Figure 2: Mass of the first massive pseudoscalar resonance as a function of ξ. The shadow band

shows the experimental value for π(1800).

At low momentum5 and for ξ À 1 we find

ΠP (p2) ' 2B̃2
0F 2

π

p2
− ÑcB̃

2
0 + O(p2) , (3.27)

where

B̃0 =
2
√

3Ñcξ

F 2
πL3

1

, F 2
π = ΠA(0)

ξÀ1' 25/3πÑc

31/6Γ(1
3)2

ξ2/3

L2
1

. (3.28)

ΠA(p2) is the axial-vector correlator calculated in ref. [11]. The first term of eq. (3.27)

shows a pole at p2 = 0 as expected due to the presence of the massless PGB.

By looking at the poles of ΠP we can find the pseudoscalar masses. The lowest mode

is the massless PGB of the spontaneous chiral symmetry breaking. There is a nonet of

PGBs but we must recall that the inclusion of the U(1)A-anomaly will give mass to the

singlet [3]. The mass of the first massive resonance is shown in figure 2 as a function of ξ.

We see that its value is far from the mass of the π(1300) state. Nevertheless, we find that,

for ξ ' 4, MP1
is close to the mass of π(1800) suggesting that this could be the state to

be associated with our first massive pseudoscalar resonance. For this resonance we find a

decay constant FP1
' 374 MeV.

Finally, we calculate the linear term in eq. (3.16) to be associated in QCD with the q̄q

condensate: ΓS = −〈JS〉. We find

ΓS =
√

3Ñc
M̃qL

2
1 + 2ξL2

0/L1 − 3M̃qL
2
0

L2
0(L

2
1 − L2

0)

fMq→0−→ 2
√

3Ñc ξ

L1(L2
1 − L2

0)

L0→0−→ 2
√

3Ñc ξ

L3
1

. (3.29)

3.2 Scalar meson interactions

To study the interactions it is convenient to perform a Kaluza-Klein (KK) decomposition

of the 5D fields:

S(x, z) =
1√

M5L

∞∑

n=1

fS
n (z)S(n)(x) , A5(x, z) =

1√
M5L

∞∑

n=0

fP
n (z)P (n)(x) . (3.30)

5In order to obtain the correct result it is important to take the limit L0 → 0 before taking p2 → 0 [16].
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Figure 3: Wave-functions of the n = 1, 2 scalar resonance, the PGB and the first massive pseu-

doscalar for ξ = 4 and λ = 10−3.

We impose the following boundary conditions on the UV-boundary:

S
∣∣
L0

= 0, P
∣∣
L0

∝ ∂5(aA5)
∣∣
L0

= 0 , (3.31)

that cancel the boundary terms of eq. (3.6). The wave-functions of the KK-modes S(n) are

given by

fS
n (z) =

z2

NSnL2
1

[
J1(MSnz) − J1(MSnL0)

Y1(MSnL0)
Y1(MSnz)

]
L0→0−→ z2

NSnL2
1

J1(MSnz) , (3.32)

where NSn is a constant fixed by canonically normalizing the fields,
∫

a3(fS
n )2dz/L = 1. In

figure 3 we plot the wave-functions of the first two KK-modes.

The equation that determines the wave-functions of the pseudoscalars can be obtained

from eq. (3.4). This is given by

DfP
n =

M2
Pn

2v2a2
fP

n . (3.33)

The lowest state, P (0) ≡ π, is the PGB that in the limit L0 → 0 is massless. Its wave-

function is given by

fπ(z)
L0→0−→ z3

L3
1N0

[
I2/3

(√
2ξ

3

z3

L3
1

)
−

I2/3

(√
2ξ/3

)

K2/3

(√
2ξ/3

)K2/3

(√
2ξ

3

z3

L3
1

)]
, (3.34)

where N0 is determined by the condition − 1
2a2v2L

fπ∂5(afπ)|L0
= 1. The wave-function of

the massive modes must be obtained numerically from eq. (3.33) with the normalization

condition
∫

dz (fP
n MPn)2/(2v2aL) = 1. The wave-functions of π and P (1) are shown in

figure 3.

The couplings between the resonances are easily obtained by integrating the 5D in-

teractions over z with the corresponding wave-functions. The coupling of a scalar to two

PGBs comes from eq. (3.9). We obtain

LSnππ = Gnππ Tr[S(n)(∂µπ)2] , (3.35)
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Gnππ [GeV−1]

G1ππ

G2ππ

G3ππ

λ [10−3]

Figure 4: Coupling of the n = 1, 2, 3 scalar resonance to two PGBs as a function of λ for ξ = 4

(solid line) and ξ = 3 (dashed line).

where Gnππ is given by

Gnππ =
1√

M5L3

∫
dz fS

n

[∂5(afπ)]2

2a3v3
. (3.36)

In figure 4 we show the coupling of the first modes as a function of λ for ξ = 3, 4. We find

that Gnππ becomes smaller as n increases. This property is also present in the coupling

between a vector resonance and two PGBs, and it is due to the oscillatory behaviour of

the KK wave-functions. Associating S(1) with a0(980), we find that MS1
' 980 MeV for

λ ' 10−3, and the prediction of the 5D model for the a0πη coupling is G1ππ ' 5.4 GeV−1

for ξ = 4. In the notation of ref. [15] we find cd = F 2
πG1ππ/2 ' 20 MeV to be compared to

the value |cd| ' 32 MeV given there. If the width of a0(980) is dominated by the decay to

ηπ we find

Γ(a0 → ηπ) ' 27 − 56 MeV , for ξ = 4 − 3 . (3.37)

Unfortunately, the experimental value of the width of a0(980) has a large uncertainty

Γ(a0) = 50 − 100 MeV [17].

4. (Pseudo)Scalar contributions to PGB interactions

By integrating the heavy scalar resonances we obtain the following four-PGB interaction

L(8)
π4 =

1

2

{
Tr[(∂µπ)2(∂νπ)2] − 1

3
Tr2[(∂µπ)2]

} ∑

n

G2
nππ

p2 + M2
Sn

, (4.1)

from the scalar octet and

L(1)
π4 =

1

6
Tr2[(∂µπ)2]

∑

n

G2
nππ

p2 + M2
Sn

, (4.2)

from the scalar singlet. The sum over the KK-modes in eqs. (4.1) and (4.2) is dominated

by the first resonance. At large momentum we find that the first resonance gives 82% of

the total contribution and this percentage rises to 94% at zero momentum (for λ ' 10−3).
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Therefore, as in the vector case [11], we find that the scalar mediation of the four-PGB

interaction is dominated by the exchange of the first resonance.

Four-PGB interactions can also arise from eq. (3.10). We find

Lπ4 =
gπ4

4
Tr[(π

←→
∂µ π)2] , where gπ4 =

1

24M5L2

∫
dz

[∂5(afπ)
]4

a9v6
. (4.3)

At high energies the four-PGB amplitude arising from eq. (4.3) grows as ∼ E2. Never-

theless, this bad energy behavior of the four-PGB amplitude is cured by the contribution

arising from eqs. (4.1) and (4.2) that cancels the E2 terms. This occurs thanks to the sum

rule ∑

n

G2
nππ = 6 gπ4 . (4.4)

Eq. (4.4) is a property of any 5D model in which the breaking of the chiral symmetry is

realized by the Higgs mechanism.

We can also calculate the coupling of the PGB to the source s that defines the scalar

form factor of the PGB. Apart from a contact piece given by

Lπ2s = −B̃0 Tr[π2s] , (4.5)

this coupling is mediated by the octet and singlet scalar resonances that gives respectively

L(8)
π2s

=

{
Tr[(∂µπ)2s] − 1

3
Tr[(∂µπ)2] Tr[s]

}∑

n

GnππFSnMSn

p2 + M2
Sn

,

L(1)
π2s

=
1

3
Tr[(∂µπ)2] Tr[s]

∑

n

GnππFSnMSn

p2 + M2
Sn

. (4.6)

The scalar form factor of the PGB is then given by (normalized to unity at zero momentum)

FS
π (p) = 1 − p2

2B̃0

∑

n

GnππFSnMSn

p2 + M2
Sn

. (4.7)

At low momentum the sum in eq. (4.7) is dominated by the first resonance that gives

75% of the total contribution (for λ ' 10−3). At large momentum we find that the form

factor goes as 1/p2, as expected from the conformal symmetry [4]. The cancellation of the

constant term in FS
π (p) occurs due to the sum rule

∑

n

GnππFSnMSn = 2B̃0 . (4.8)

This sum rule is fulfilled in any 5D model whose metric approaches to AdS5 for z → 0

(conformal theories in the UV). In eq. (4.8) we find that the first two resonances give a

similar contribution, while the contributions of the heavier resonances tend to cancel out.

Therefore we see that FS
π (p) is very well approximated by the exchange of only the first

two resonances.
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4.1 The Chiral Lagrangian

At energies below the massive resonances our 5D model is described by the QCD chiral

lagrangian. In this section we calculate the (pseudo)scalar contributions to the coefficients

of the chiral lagrangian and compare these results with the QCD values.

Up to O(p2), the chiral lagrangian for the octet of PGB, π = πaTa, is given by [18]

L2 =
F 2

π

4
Tr

[
DµU †DµU + U †χ + χ†U

]
, (4.9)

where

DµU = ∂µU − iRµU + iULµ, U = ei
√

2 π/Fπ , (4.10)

and

χ = 2B0 (Mq + s + ips) , Mq = Diag(mu,md,ms) . (4.11)

The prediction of our model for Fπ is given in eq. (3.28). It gives

Fπ ' 87

(
ξ

4

) 1

3

MeV . (4.12)

For the prediction of B0 we can use eq. (3.29):

〈q̄q〉 = −F 2
πB0 = −2

√
3Ñc

ξ

L3
1

' −(226 MeV)3
(

ξ

4

)
, (4.13)

that leads to

B0 =
2
√

3Ñcξ

F 2
πL3

1

' 1520

(
ξ

4

) 1

3

MeV . (4.14)

Notice that B0 = B̃0 as it should be, since the first term of eq. (3.27) can also be deduced

by integrating out the PGB at tree-level in the chiral lagrangian. The relation B0 = B̃0

also leads to the right matching of eq. (4.5) with the chiral lagrangian. The value of the

quark masses Mq is related to the VEV of Φ on the UV-boundary. Using eqs. (2.8), (3.14)

and (3.22) we obtain6

Mq =
1√
3
M̃q . (4.15)

From the chiral lagrangian we have

(m2
π)ab = 2B0 Tr [MqTaTb] , (4.16)

that for mπ0 ' 135 MeV and mK0 ' 498 MeV gives

mu + md = 11.5 MeV , ms = 150 MeV . (4.17)

The value of the quark masses in eq. (4.17) are scale independent. This is because we took

M2
Φ = −3/L2 that corresponds, by the AdS/CFT dictionary, to fix the dimension of Mq

6In refs. [10, 11] the quark masses did not have the correct normalization since the value of α was not

calculated.
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to be exactly one. In QCD however the quark masses evolve with the energy scale µ. To

minimize this discrepancy we must compare our predictions with the experimental values

of the quark masses taken at the lowest energy scale (∼ 1 GeV). From ref. [17] we have

mu + md = 7 − 16 MeV and ms = 108 − 175 MeV at µ ∼ 1GeV in good agreement with

eq. (4.17).

At O(p4) the chiral lagrangian is given by [18]

L4 = L1 Tr2
[
DµU †DµU

]
+ L2 Tr

[
DµU †DνU

]
Tr

[
DµU †DνU

]

+L3 Tr
[
DµU †DµUDνU

†DνU
]

+L4 Tr
[
DµU †DµU

]
Tr

[
U †χ + χ†U

]
+ L5 Tr

[
DµU †DµU

(
U †χ + χ†U

) ]

+L6 Tr2
[
U †χ + χ†U

]
+ L7 Tr2

[
U †χ − χ†U

]
+ L8 Tr

[
χ†Uχ†U + U †χU †χ

]

−iL9 Tr
[
Fµν

R DµUDνU
† + Fµν

L DµU †DνU
]
+ L10 Tr

[
U †Fµν

R UFLµν

]
. (4.18)

At tree-level, the (pseudo)scalar resonances only contribute7 to L1,3,4,5,6,8. The contribu-

tions to the coefficients L1 and L3 coming from the octet and singlet scalar can be read

from eqs. (4.1) and (4.2). We obtain

L
(8)
1 = −1

3
L

(8)
3 , L

(1)
1 = −L

(8)
1 , (4.19)

L
(8)
3 =

∑

n

G2
nππF 4

π

8M2
Sn

, L
(1)
3 = 0 . (4.20)

The octet and singlet contribution to the coefficient L1 cancels out, as expected from large-

Nc [18], and only L3 gets a nonzero scalar contribution. For λ ' 10−3 and ξ = 4 (3) we

obtain L
(8)
3 ' 0.2 · 10−3 (0.3 · 10−3). Adding the vector contribution to L3 calculated in

ref. [11] we get L3 ' −2.4 · 10−3 (−1.7 · 10−3) to be compared with the experimental

value [19] Lexp
3 ' −3.5 ± 1.1. The scalar contribution to L4 and L5 can be obtained from

eq. (4.6):

L
(8)
4 = −1

3
L

(8)
5 , L

(1)
4 = −L

(8)
4 , (4.21)

L
(8)
5 =

F 2
π

8B0

∑

n

GnππFSn

MSn

, L
(1)
5 = 0 . (4.22)

As expected from large-Nc, the total contribution to L4 is zero. The value of L5 is shown

in figure 5 as a function of MS1
for ξ = 3, 4. For MS1

∼ 1 GeV we obtain L5 ' 1.1 · 10−3

in good agreement with experiments. L5 can also be calculated from the axial-vector

correlator [11]:

L5 =
1

16B0

dΠA

dMq

∣∣∣∣
Mq=0

. (4.23)

7L7 will not be studied here since it arises from integrating out the singlet PGB that becomes massive

when the U(1)A anomaly is considered.
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For ξ À 1 with λξ2 fixed,8 we obtain

L5 ' Ñcπ
3

√
3Γ(1

3 )6

[
1 − 2Ñc

3F 2
πL2

1

]
+

F 4
πL4

1

192λξ4
' 1.2 ·10−3

[
1 − 0.23

(
4

ξ

)2

3

+ 0.09

(
10−3

λ

)(
4

ξ

)8

3

]
.

(4.24)

Finally, the coefficient L6,8 can be computed from the correlators ΠS,P . We have

L
(8)
6 = −1

3
L

(8)
8 , L

(1)
6 = −L

(8)
6 , (4.25)

L
(8)
8 =

1

32B2
0

d

dp2

[
p2

(
ΠS(p2) − ΠP (p2)

)]∣∣∣∣
p2=0

, L
(1)
8 = 0 . (4.26)

Then L6 = L
(8)
6 + L

(1)
6 = 0, as expected from large-Nc. Using eqs. (3.23), (3.27) and (4.14)

in the above equation, we obtain

L8 ' Ñc

32

[
1 − 6

B2
0L2

1

+
3Ñc

2λξ2B2
0L2

1

]
' 8 · 10−4

[
1 − 0.27

(
4

ξ

) 2

3

+ 0.11

(
10−3

λ

)(
4

ξ

)8

3

]
.

(4.27)

Notice that this expression is only valid for ξ À 1 with λξ2 fixed. In figure 5 we show

the exact value of L8 as a function of MS1
. For MS1

' 1 GeV and ξ = 4 we obtain

L8 ' 0.6 · 10−3 again in good agreement with the experimental value. From figure 5 one

can see that small values of MS1
are preferred. The coefficient L8 can also be written as

L8 =
1

32B2
0

[
F 2

S1
+

∞∑

n=1

(
F 2

Sn+1
− F 2

Pn

)]
, (4.28)

that shows that in the limit where the chiral symmetry is restored, ξ → 0 and FSn+1
→ FPn ,

only the first term remains. For ξ ' 4 we find that the first term still dominates (it gives

70% of the total contribution for λ ' 10−3) since the other resonances, being so heavy, are

not very sensitive to chiral symmetry breaking.

5. Conclusions

We have analyzed the scalar and pseudoscalar sector of a five-dimensional model proposed

to study mesons in QCD. We have calculated the scalar and pseudoscalar two-point cor-

relator and we have obtained the mass spectrum and interactions. This has allowed us to

determine the (pseudo)scalar contribution to the scalar form factor of the PGB as well as

the contribution to the Li coefficients of the chiral lagrangian. We have also found two

interesting sum rules for the scalar couplings and masses of the resonances that are fulfilled

generically in AdS5 models.

Comparing with the experimental data, we have found a good agreement for the Li

predictions (see figure 5) and the quark masses. For the first massive pseudoscalar resonance

8In ref. [11] the value of L5 was given for λξ2 À 1 and therefore the last term of eq. (4.24) was not

present. This last term arises due to the ξ dependence on fMq - see eq. (2.11). Also a factor 1/2 was missing

in eq. (67) of ref. [11] and therefore the prediction of L5 given there was a factor 2 larger.
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Figure 5: Prediction for L5 and L8 as a function of MS1
. The horizontal line corresponds to the

experimental value with the error bands [19].

we have obtained a mass around 1800 MeV, quite different from the mass of the lowest QCD

pseudoscalar resonance π(1300). This has suggested us to associate this state to π(1800).

We have also given predictions for the scalar couplings and decay constants but the absence

of clean experimental data has not allowed us to compare them with QCD.

Previous approaches to calculate the scalar and pseudoscalar spectrum and/or deter-

mine their contribution to Li can be found in refs. [20]–[23]. In particular, the analysis of

refs. [21, 22] has certain similarity with ours. Refs. [21, 22] work in the large-Nc limit where

QCD is described as a theory of infinite hadron resonances. These sets of infinite hadrons,

however, are approximated in refs. [21, 22] by taking only the lowest modes, and their

masses and couplings are determined by demanding a good high-energy behaviour of the

correlators and form factors. In our approach we have shown that the correlators and form

factors have the correct high-energy behaviour since this is dictated by the conformal sym-

metry. We have also found that, in certain cases, it can be a good approximation to take

only the lowest resonance. Therefore in these cases our approach and that of refs. [21, 22]

give similar results. Nevertheless, we have showed that the single-resonance approximation

is not always justified (for example in eq. (4.8)) and this approximation can lead to large

errors in the determination of the scalar parameters.

The analysis carried out here can be extended to study three-point or four-point cor-

relation functions or to incorporate the effects of ms either in the mass spectrum or in the

interactions. Also the effects of higher-dimensional operators or departures from AdS5 in

the IR-boundary can be studied. These effects are important to study the power corrections

in the correlators. We leave this analysis for the future.
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